Balanced k-Center Clustering When k Is A Constant
نویسنده
چکیده
The problem of constrained k-center clustering has attracted significant attention in the past decades. In this paper, we study balanced k-center cluster where the size of each cluster is constrained by the given lower and upper bounds. The problem is motivated by the applications in processing and analyzing large-scale data in high dimension. We provide a simple nearly linear time 4-approximation algorithm when the number of clusters k is assumed to be a constant. Comparing with existing method, our algorithm improves the approximation ratio and significantly reduces the time complexity. Moreover, our result can be easily extended to any metric space.
منابع مشابه
Distributed Balanced Clustering via Mapping Coresets
Large-scale clustering of data points in metric spaces is an important problem in mining big data sets. For many applications, we face explicit or implicit size constraints for each cluster which leads to the problem of clustering under capacity constraints or the “balanced clustering” problem. Although the balanced clustering problem has been widely studied, developing a theoretically sound di...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملData Driven Resource Allocation for Distributed Machine Learning
In distributed machine learning, data is dispatched to multiple machines for processing. Traditional distributed Machine Learning systems dealing with high volume of data randomly distribute the data among workers and either learn a linear model for each partition of data or in tandem where the workers contribute updates to one synchronized global model. Motivated by the fact that similar data ...
متن کامل